Nitric oxide and posttranslational modification of the vascular proteome: S-nitrosation of reactive thiols.

نویسندگان

  • Diane E Handy
  • Joseph Loscalzo
چکیده

Nitric oxide (NO*) is known to exert its effects via guanylyl cyclase and cyclic GMP-dependent pathways and by cyclic GMP-independent pathways, including the posttranslational modification of proteins. Much ongoing research is focused on defining the mechanisms of NO*-mediated protein modification, the identity and function of the modified proteins, and the significance of these changes in health and disease. S-nitrosation or thionitrite formation has only been found on a limited number of residues in a subset of proteins in in vitro and in vivo studies. Protein S-nitrosation also appears to be reversible. There are several theories about the in vivo S-nitrosating agent, and most suggest a role for oxidation products of NO* in this process. Flux in cellular S-nitrosoprotein pools appears to be regulated by NO* availability and is redox-sensitive. An analysis of S-nitrosation in candidate proteins has clarified the mechanism by which NO* regulates enzymatic and cellular functions. These findings suggest the utility of using proteomic methods to identify unique targets for protein S-nitrosation to understand further the molecular mechanisms of the effects of NO*.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nitrosative stress and redox-cycling agents synergize to cause mitochondrial dysfunction and cell death in endothelial cells☆

Nitric oxide production by the endothelium is required for normal vascular homeostasis; however, in conditions of oxidative stress, interactions of nitric oxide with reactive oxygen species (ROS) are thought to underlie endothelial dysfunction. Beyond canonical nitric oxide signaling pathways, nitric oxide production results in the post-translational modification of protein thiols, termed S-nit...

متن کامل

S-nitrosation of proteins relevant to Alzheimer's disease during early stages of neurodegeneration.

Protein S-nitrosation (SNO-protein), the nitric oxide-mediated posttranslational modification of cysteine thiols, is an important regulatory mechanism of protein function in both physiological and pathological pathways. A key first step toward elucidating the mechanism by which S-nitrosation modulates a protein's function is identification of the targeted cysteine residues. Here, we present a s...

متن کامل

Thioredoxin is required for S-nitrosation of procaspase-3 and the inhibition of apoptosis in Jurkat cells.

S-nitrosation is a posttranslational, oxidative addition of NO to cysteine residues of proteins that has been proposed as a cGMP-independent signaling pathway [Hess DT, Matsumoto A, Kim SO, Marshall HE, Stamler JS (2005) Nat Rev Mol Cell Biol 6:150-166]. A paradox of S-nitrosation is that only a small set of reactive cysteines are modified in vivo despite the promiscuous reactivity NO exhibits ...

متن کامل

Persistent S-nitrosation of complex I and other mitochondrial membrane proteins by S-nitrosothiols but not nitric oxide or peroxynitrite: implications for the interaction of nitric oxide with mitochondria.

S-nitrosation of mitochondrial proteins has been proposed to contribute to the pathophysiological interactions of nitric oxide (NO) and its derivatives with mitochondria but has not been shown directly. Furthermore, little is known about the mechanism of formation or the fate of these putative S-nitrosothiols. Here we have determined whether mitochondrial membrane protein thiols can be S-nitros...

متن کامل

Oxidation and nitrosation of thiols at low micromolar exposure to nitric oxide. Evidence for a free radical mechanism.

Although the nitric oxide (.NO)-mediated nitrosation of thiol-containing molecules is increasingly recognized as an important post-translational modification in cell signaling and pathology, little is known about the factors that govern this process in vivo. In the present study, we examined the chemical pathways of nitrosothiol (RSNO) production at low micromolar concentrations of .NO. Our res...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Arteriosclerosis, thrombosis, and vascular biology

دوره 26 6  شماره 

صفحات  -

تاریخ انتشار 2006